Temporal and Spatial Aspects of Predator-prey Dynamics
نویسندگان
چکیده
Ungulates are both major consumers of vegetation and are themselves consumed by carnivores, so food web dynamics, both top-down (predation) and bottom-up (food and weather effects), are prominent in theoretical and applied research involving ungulates. The long generation time of ungulates induces long lags in population responses. Over broad geographic regions, ungulates commonly achieve high density only when predation is relatively low (< 2 species of predator), suggesting that predation provides a pervasive limitation of large herbivores. Ungulate stability is fundamentally a trophic-dynamics issue, usually a mix of top-down and bottom-up influences. The Isle Royale case history, spanning 4 decades, reveals a wolf-moose system fluctuating at 2-decade intervals with significant predation, food, and weather effects on ungulates. After a century, an equilibrium between moose and forest vegetation has not yet been reached, and a historical context seems necessary to understand trophic relationships. Components of predation compared at large spatial scales reveal different predator-prey patterns than the single system at Isle Royale, and analyses involving substitution of space for time also run counter to studies of single systems. Choice of spatial and temporal scales for field studies and meta-analyses appear to have a strong bearing on the results and their interpretation. Thus temporal and spatial scales enter influentially in the actual dynamics of carnivore-ungulate interaction as well problematically in our analyses of them. ALCES VOL. 39: 215-232 (2003)
منابع مشابه
Dynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملLIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING
In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...
متن کاملPrey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملModelling the dynamic spatio-temporal response of predators to transient prey patches in the field
Biosketch. Linton Winder's research interests relate to the population dynamics of generalist predators and their prey, and in particular how spatio-temporal pattern mediates such interactions. Summary The spatio-temporal dynamics of two aphid species (Metopolophium dirhodum and Sitobion avenae) and a generalist predator (Pterostichus melanarius) were observed in a field-scale study using a gri...
متن کاملThe Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model
Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic. In the present paper, some predator-prey models in which two ecologically inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005